direct product, metabelian, soluble, monomial, A-group
Aliases: S3×C32⋊C4, C33⋊(C2×C4), (S3×C32)⋊C4, C33⋊C2⋊C4, C3⋊S3.4D6, C32⋊5(C4×S3), C33⋊C4⋊1C2, (S3×C3⋊S3).C2, C3⋊1(C2×C32⋊C4), (C3×C32⋊C4)⋊2C2, (C3×C3⋊S3).3C22, SmallGroup(216,156)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C33 — C3×C3⋊S3 — S3×C3⋊S3 — S3×C32⋊C4 |
C33 — S3×C32⋊C4 |
Generators and relations for S3×C32⋊C4
G = < a,b,c,d,e | a3=b2=c3=d3=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ede-1=cd=dc, ece-1=c-1d >
Subgroups: 468 in 60 conjugacy classes, 14 normal (all characteristic)
C1, C2, C3, C3, C4, C22, S3, S3, C6, C2×C4, C32, C32, Dic3, C12, D6, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C4×S3, C33, C32⋊C4, C32⋊C4, S32, C2×C3⋊S3, S3×C32, C3×C3⋊S3, C33⋊C2, C2×C32⋊C4, C3×C32⋊C4, C33⋊C4, S3×C3⋊S3, S3×C32⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D6, C4×S3, C32⋊C4, C2×C32⋊C4, S3×C32⋊C4
Character table of S3×C32⋊C4
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 12A | 12B | |
size | 1 | 3 | 9 | 27 | 2 | 4 | 4 | 8 | 8 | 9 | 9 | 27 | 27 | 12 | 12 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | i | -i | -i | i | 1 | 1 | -1 | -i | i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | i | -i | -1 | -1 | -1 | -i | i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | -i | i | -1 | -1 | -1 | i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -i | i | i | -i | 1 | 1 | -1 | i | -i | linear of order 4 |
ρ9 | 2 | 0 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 0 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | -2i | 2i | 0 | 0 | 0 | 0 | 1 | -i | i | complex lifted from C4×S3 |
ρ12 | 2 | 0 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 2i | -2i | 0 | 0 | 0 | 0 | 1 | i | -i | complex lifted from C4×S3 |
ρ13 | 4 | 4 | 0 | 0 | 4 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ14 | 4 | -4 | 0 | 0 | 4 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ15 | 4 | -4 | 0 | 0 | 4 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ16 | 4 | 4 | 0 | 0 | 4 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ17 | 8 | 0 | 0 | 0 | -4 | -4 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ18 | 8 | 0 | 0 | 0 | -4 | 2 | -4 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 8 9)(2 5 10)(3 6 11)(4 7 12)
(1 3)(2 4)(5 12)(6 9)(7 10)(8 11)
(1 8 9)(3 11 6)
(1 8 9)(2 10 5)(3 11 6)(4 7 12)
(1 2 3 4)(5 6 7 8)(9 10 11 12)
G:=sub<Sym(12)| (1,8,9)(2,5,10)(3,6,11)(4,7,12), (1,3)(2,4)(5,12)(6,9)(7,10)(8,11), (1,8,9)(3,11,6), (1,8,9)(2,10,5)(3,11,6)(4,7,12), (1,2,3,4)(5,6,7,8)(9,10,11,12)>;
G:=Group( (1,8,9)(2,5,10)(3,6,11)(4,7,12), (1,3)(2,4)(5,12)(6,9)(7,10)(8,11), (1,8,9)(3,11,6), (1,8,9)(2,10,5)(3,11,6)(4,7,12), (1,2,3,4)(5,6,7,8)(9,10,11,12) );
G=PermutationGroup([[(1,8,9),(2,5,10),(3,6,11),(4,7,12)], [(1,3),(2,4),(5,12),(6,9),(7,10),(8,11)], [(1,8,9),(3,11,6)], [(1,8,9),(2,10,5),(3,11,6),(4,7,12)], [(1,2,3,4),(5,6,7,8),(9,10,11,12)]])
G:=TransitiveGroup(12,119);
(1 6 3)(2 5 4)(7 11 18)(8 12 15)(9 13 16)(10 14 17)
(1 6)(2 5)(7 18)(8 15)(9 16)(10 17)
(1 16 18)(2 17 15)(3 13 11)(4 14 12)(5 10 8)(6 9 7)
(1 18 16)(3 11 13)(6 7 9)
(1 2)(3 4)(5 6)(7 8 9 10)(11 12 13 14)(15 16 17 18)
G:=sub<Sym(18)| (1,6,3)(2,5,4)(7,11,18)(8,12,15)(9,13,16)(10,14,17), (1,6)(2,5)(7,18)(8,15)(9,16)(10,17), (1,16,18)(2,17,15)(3,13,11)(4,14,12)(5,10,8)(6,9,7), (1,18,16)(3,11,13)(6,7,9), (1,2)(3,4)(5,6)(7,8,9,10)(11,12,13,14)(15,16,17,18)>;
G:=Group( (1,6,3)(2,5,4)(7,11,18)(8,12,15)(9,13,16)(10,14,17), (1,6)(2,5)(7,18)(8,15)(9,16)(10,17), (1,16,18)(2,17,15)(3,13,11)(4,14,12)(5,10,8)(6,9,7), (1,18,16)(3,11,13)(6,7,9), (1,2)(3,4)(5,6)(7,8,9,10)(11,12,13,14)(15,16,17,18) );
G=PermutationGroup([[(1,6,3),(2,5,4),(7,11,18),(8,12,15),(9,13,16),(10,14,17)], [(1,6),(2,5),(7,18),(8,15),(9,16),(10,17)], [(1,16,18),(2,17,15),(3,13,11),(4,14,12),(5,10,8),(6,9,7)], [(1,18,16),(3,11,13),(6,7,9)], [(1,2),(3,4),(5,6),(7,8,9,10),(11,12,13,14),(15,16,17,18)]])
G:=TransitiveGroup(18,95);
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 23 10)(6 24 11)(7 21 12)(8 22 9)
(1 22)(2 23)(3 24)(4 21)(5 13)(6 14)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)
(1 17 16)(2 13 18)(3 14 19)(4 20 15)(5 10 23)(6 11 24)(7 21 12)(8 22 9)
(2 18 13)(4 15 20)(5 23 10)(7 12 21)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,17,16)(2,13,18)(3,14,19)(4,20,15)(5,10,23)(6,11,24)(7,21,12)(8,22,9), (2,18,13)(4,15,20)(5,23,10)(7,12,21), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,17,16)(2,13,18)(3,14,19)(4,20,15)(5,10,23)(6,11,24)(7,21,12)(8,22,9), (2,18,13)(4,15,20)(5,23,10)(7,12,21), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,23,10),(6,24,11),(7,21,12),(8,22,9)], [(1,22),(2,23),(3,24),(4,21),(5,13),(6,14),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20)], [(1,17,16),(2,13,18),(3,14,19),(4,20,15),(5,10,23),(6,11,24),(7,21,12),(8,22,9)], [(2,18,13),(4,15,20),(5,23,10),(7,12,21)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,559);
(1 2 3)(4 19 13)(5 16 14)(6 17 15)(7 18 12)(8 27 20)(9 24 21)(10 25 22)(11 26 23)
(2 3)(4 19)(5 16)(6 17)(7 18)(8 20)(9 21)(10 22)(11 23)
(1 24 26)(2 21 23)(3 9 11)(4 20 5)(6 7 22)(8 16 19)(10 17 18)(12 25 15)(13 27 14)
(1 14 12)(2 5 7)(3 16 18)(4 22 21)(6 23 20)(8 17 11)(9 19 10)(13 25 24)(15 26 27)
(4 5 6 7)(8 9 10 11)(12 13 14 15)(16 17 18 19)(20 21 22 23)(24 25 26 27)
G:=sub<Sym(27)| (1,2,3)(4,19,13)(5,16,14)(6,17,15)(7,18,12)(8,27,20)(9,24,21)(10,25,22)(11,26,23), (2,3)(4,19)(5,16)(6,17)(7,18)(8,20)(9,21)(10,22)(11,23), (1,24,26)(2,21,23)(3,9,11)(4,20,5)(6,7,22)(8,16,19)(10,17,18)(12,25,15)(13,27,14), (1,14,12)(2,5,7)(3,16,18)(4,22,21)(6,23,20)(8,17,11)(9,19,10)(13,25,24)(15,26,27), (4,5,6,7)(8,9,10,11)(12,13,14,15)(16,17,18,19)(20,21,22,23)(24,25,26,27)>;
G:=Group( (1,2,3)(4,19,13)(5,16,14)(6,17,15)(7,18,12)(8,27,20)(9,24,21)(10,25,22)(11,26,23), (2,3)(4,19)(5,16)(6,17)(7,18)(8,20)(9,21)(10,22)(11,23), (1,24,26)(2,21,23)(3,9,11)(4,20,5)(6,7,22)(8,16,19)(10,17,18)(12,25,15)(13,27,14), (1,14,12)(2,5,7)(3,16,18)(4,22,21)(6,23,20)(8,17,11)(9,19,10)(13,25,24)(15,26,27), (4,5,6,7)(8,9,10,11)(12,13,14,15)(16,17,18,19)(20,21,22,23)(24,25,26,27) );
G=PermutationGroup([[(1,2,3),(4,19,13),(5,16,14),(6,17,15),(7,18,12),(8,27,20),(9,24,21),(10,25,22),(11,26,23)], [(2,3),(4,19),(5,16),(6,17),(7,18),(8,20),(9,21),(10,22),(11,23)], [(1,24,26),(2,21,23),(3,9,11),(4,20,5),(6,7,22),(8,16,19),(10,17,18),(12,25,15),(13,27,14)], [(1,14,12),(2,5,7),(3,16,18),(4,22,21),(6,23,20),(8,17,11),(9,19,10),(13,25,24),(15,26,27)], [(4,5,6,7),(8,9,10,11),(12,13,14,15),(16,17,18,19),(20,21,22,23),(24,25,26,27)]])
G:=TransitiveGroup(27,85);
S3×C32⋊C4 is a maximal quotient of D6⋊(C32⋊C4) C33⋊(C4⋊C4) C33⋊5(C2×C8) C33⋊M4(2) C33⋊2M4(2)
action | f(x) | Disc(f) |
---|---|---|
12T119 | x12-x9-4x6+4x3+1 | 318·59 |
Matrix representation of S3×C32⋊C4 ►in GL6(𝔽13)
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 12 | 1 | 12 | 1 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 5 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
G:=sub<GL(6,GF(13))| [12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,1,0,0,1,1,12,12,0,0,0,12,0,0,0,0,1,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,5,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,5,0,0] >;
S3×C32⋊C4 in GAP, Magma, Sage, TeX
S_3\times C_3^2\rtimes C_4
% in TeX
G:=Group("S3xC3^2:C4");
// GroupNames label
G:=SmallGroup(216,156);
// by ID
G=gap.SmallGroup(216,156);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,3,-3,31,489,111,490,376,5189]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^3=d^3=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*d*e^-1=c*d=d*c,e*c*e^-1=c^-1*d>;
// generators/relations
Export